
Synthesis of Public-Key Encryption Schemes

Gilles Barthe1, Juan Manuel Crespo1, Martin Gagné2, César Kunz1,3,
and Yassine Lakhnech2

1 IMDEA 2 VERIMAG 3U. Politecnica Madrid

The goal of program synthesis is to generate automatically code that
achieves a particular purpose, often specified by some input/output speci-
fication. To date, program synthesis has been useed for many application
domains, including geometry, graph algorithms, bitvectors algorithms,
program inverses, and cryptographic protocols. In this abstract, we re-
port on the first application of program synthesis to public-key encryption
schemes. Our approach is based on the following steps:

– smart generation of public-key encryption schemes built from one-way
functions, random oracles, and operations on bitstrings;

– efficient symbolic filters for eliminating insecure schemes, and schemes
for which the decryption oracle is ill-defined;

– automated proofs of semantic security, using automated Hoare log-
ics for cryptographic constructions [2], and strategies for game-based
proofs;

– a new compiler for transforming IND-CPA schemes into IND-CCA
schemes.

Our tool generates and proves some well-known schemes, for instance
Bellare and Rogaway encryption schemes, and REACT. However, not all
generated schemes can be proved secure using automated Hoare logics, or
game-based proofs. For instance, our tool generates but cannot prove the
security of ZAEP [1], a new redundancy-free public-key encryption scheme
based on the Rabin function and RSA with exponent 3. This example
suggests that synthesis techniques may lead to surprising discoveries.

References

1. G. Barthe, D. Pointcheval, and S. Zanella-Béguelin. Verified security of redundancy-
free encryption from rabin and rsa. Cryptology ePrint Archive, Report 2012/308,
2012.

2. J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Towards
automated proofs for asymmetric encryption schemes in the random oracle model.
In 15th ACM Conference on Computer and Communications Security, CCS 2008,
pages 371–380, New York, 2008. ACM.


