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The goal of program synthesis is to generate automatically code that
achieves a particular purpose, often specified by some input/output speci-
fication. To date, program synthesis has been useed for many application
domains, including geometry, graph algorithms, bitvectors algorithms,
program inverses, and cryptographic protocols. In this abstract, we re-
port on the first application of program synthesis to public-key encryption
schemes. Our approach is based on the following steps:

– smart generation of public-key encryption schemes built from one-way
functions, random oracles, and operations on bitstrings;

– efficient symbolic filters for eliminating insecure schemes, and schemes
for which the decryption oracle is ill-defined;

– automated proofs of semantic security, using automated Hoare log-
ics for cryptographic constructions [2], and strategies for game-based
proofs;

– a new compiler for transforming IND-CPA schemes into IND-CCA
schemes.

Our tool generates and proves some well-known schemes, for instance
Bellare and Rogaway encryption schemes, and REACT. However, not all
generated schemes can be proved secure using automated Hoare logics, or
game-based proofs. For instance, our tool generates but cannot prove the
security of ZAEP [1], a new redundancy-free public-key encryption scheme
based on the Rabin function and RSA with exponent 3. This example
suggests that synthesis techniques may lead to surprising discoveries.
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