
Enforcing information flow policies by a three-valued analysis
Josée Desharnais

josee.desharnais@ift.ulaval.ca

Erwanne P. Kanyabwero
erwamme-pamela.kanyabwero.1@ulaval.ca

Nadia Tawbi
nadia.tawbi@ift.ulaval.ca

Université Laval, Québec, Canada

Abstract
Today, security issues are a major concern, especially whenit comes to securing information flow.

How can we be sure that a program using a credit card number will not leak this information to an
unauthorized person? Or that one that verifies a secret password to authenticate a user will not write
it in a file with public access? Those are examples of information flow breaches in a program that
should be controlled. Secure information flow analysis is a technique used to prevent data misuse.

Our objective is to take advantage of the combination of static and dynamic analysis. We design
a three-valued type system to statically check non-interference for a simple imperative programming
language. To the usual two main security levels, public and private, we add a third value,unknown,
that captures the possibility that we may not know, before execution, whether the information is pub-
lic or private. Standard two-valued analysis has no choice but to be pessimistic with uncertainty and
hence generate false positive alarms. If uncertainty arises during the analysis, we tag the instruction
in cause: in a second step, instrumentation at every such point will allow us to head to a more precise
result than purely static approaches. We get reduced false alarms, while introducing a light runtime
overhead by instrumenting only when there is a need for it.

The goal of a security analysis is to ensure non-interference, that is, to prevent inadvertent in-
formation leaks from private channels to public channels. More precisely, in our case, the goal is
1) to ensure that, in a well-typed program, operations involving private channels do not have any
effect on the content of public channels, 2) to ensure that a program not satisfying non-interference is
rejected, and finally, specific to our analysis, 3) to detect aneed of instrumentation in uncertain cases.
Furthermore, we consider that programs have interaction with an external environment through com-
municationchannels, i.e., objects through which a program can get information from users (printing
screen, file, network, etc.). In contrast with the work of Volpano et al. [4], variables are not necessar-
ily channels, they are local and hence their security type isallowed to change throughout the program.
This is similar to flow-sensitive typing approaches of Hunt and Sands, or Russo and Sabelfeld [2, 3].
Our approach distinguishes clearly communicating channels, through which the program interacts
and which have a priori security levels, from variables, used locally. Therefore, our definition of
non-interference applies to communication channels: someone observing the communication chan-
nels cannot deduce anything about the initial channels of higher security level.

We aim at protecting against two types of flows, as explained in [1]: explicit flowoccurs when
the content of a variable is directly transferred to anothervariable, whereasimplicit flow happens
when the content assigned to a variable depends on another variable, i.e., the guard of a conditional
structure. Thus, the security requirements are first, explicit flows from a variable to a channel of
lower security are forbidden and second, implicit flows where the guard contains a variable of higher
security than the variables assigned, are forbidden.

References

[1] Dorothy E. Denning. A lattice model of secure information flow. Communications of the ACM, 19:236–243,
May 1976.

[2] Sebastian Hunt and David Sands. On flow-sensitive security types. InProceedings of the 33rd ACM Sympo-
sium on Principles of Programming Languages, January 2006.

[3] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive security analysis. InProceedings of
the 23rd IEEE Computer Security Foundations Symposium, pages 186–199, 2010.

[4] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow analysis.Journal
of Computer Security, 4(2-3):167–187, January 1996.

1

josee.desharnais@ift.ulaval.ca
erwamme-pamela.kanyabwero.1@ulaval.ca
nadia.tawbi@ift.ulaval.ca

