Enforcing information flow policies by a three-valued arsaty

Josée Desharnais Erwanne P. Kanyabwero
josee.desharnais@ift.ulaval.ca erwamme-pamela.kanyabwero.1@Qulaval.ca
Nadia Tawbi
nadia.tawbi@ift.ulaval.ca

Université Laval, Québec, Canada

Abstract

Today, security issues are a major concern, especially Whemes to securing information flow.
How can we be sure that a program using a credit card numblenatileak this information to an
unauthorized person? Or that one that verifies a secret padswvauthenticate a user will not write
it in a file with public access? Those are examples of infoinalow breaches in a program that
should be controlled. Secure information flow analysis ischihique used to prevent data misuse.

Our objective is to take advantage of the combination ofcsgatd dynamic analysis. We design
a three-valued type system to statically check non-interfee for a simple imperative programming
language. To the usual two main security levels, public andife, we add a third valueinknown
that captures the possibility that we may not know, befoexakion, whether the information is pub-
lic or private. Standard two-valued analysis has no choitedbe pessimistic with uncertainty and
hence generate false positive alarms. If uncertainty sdseing the analysis, we tag the instruction
in cause: in a second step, instrumentation at every suct il allow us to head to a more precise
result than purely static approaches. We get reduced fisas while introducing a light runtime
overhead by instrumenting only when there is a need for it.

The goal of a security analysis is to ensure non-interfexgtiat is, to prevent inadvertent in-
formation leaks from private channels to public channelaré/fprecisely, in our case, the goal is
1) to ensure that, in a well-typed program, operations wingl private channels do not have any
effect on the content of public channels, 2) to ensure thabgrpm not satisfying non-interference is
rejected, and finally, specific to our analysis, 3) to deteted of instrumentation in uncertain cases.
Furthermore, we consider that programs have interactitmavi external environment through com-
municationchannelsi.e., objects through which a program can get informatiomfusers (printing
screen, file, network, etc.). In contrast with the work ofpéoho et al.[[4], variables are not necessar-
ily channels, they are local and hence their security typ#iasved to change throughout the program.
This is similar to flow-sensitive typing approaches of Humd &ands, or Russo and Sabelfeld [2, 3].
Our approach distinguishes clearly communicating chanrletough which the program interacts
and which have a priori security levels, from variables,dukecally. Therefore, our definition of
non-interference applies to communication channels: somebserving the communication chan-
nels cannot deduce anything about the initial channelsgtfdrisecurity level.

We aim at protecting against two types of flows, as explaingdli explicit flowoccurs when
the content of a variable is directly transferred to anotrerable, whereasnplicit flow happens
when the content assigned to a variable depends on anottiedleai.e., the guard of a conditional
structure. Thus, the security requirements are first, ei¢glows from a variable to a channel of
lower security are forbidden and second, implicit flows vetidie guard contains a variable of higher
security than the variables assigned, are forbidden.

References

[1] Dorothy E. Denning. A lattice model of secure informatittow. Communications of the ACM9:236—243,
May 1976.

[2] Sebastian Hunt and David Sands. On flow-sensitive sgciypes. InProceedings of the 33rd ACM Sympo-
sium on Principles of Programming Languagéanuary 2006.

[3] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. sthtiw-sensitive security analysis. Rroceedings of
the 23rd IEEE Computer Security Foundations Sympospages 186-199, 2010.

[4] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. Ausal type system for secure flow analysisurnal
of Computer Security(2-3):167-187, January 1996.


josee.desharnais@ift.ulaval.ca
erwamme-pamela.kanyabwero.1@ulaval.ca
nadia.tawbi@ift.ulaval.ca

